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We wish to report extraordinarily efficient catalysis of depro-
tonation of theR-amino carbon of glycine methyl ester by the
simple ketone acetone that is the result of a 107-fold larger acidity
constantKCH for carbon deprotonation of the iminium ion adduct
IH + (pKCH ) 14) than for deprotonation ofN-protonated glycine
methyl esterGH+ (pKCH ) 21).

The mechanism for enzyme-catalyzed deprotonation of carbon
acids is a subject of some controversy and much interest.1 The
bulk of the rate acceleration for enzyme-catalyzed carbon depro-
tonation ofR-amino acids is the result of stabilization of the amino
acid enol(ate) relative to the very weak parent carbon acid.1 We
have shown that the acidity of theR-proton of glycine anion
H2NCH2CO2

- is increased ca. 1012-fold by the combined effects
of N-protonation andO-methylation (a model forO-protonation)
to give+H3NCH2CO2Me (GH+).2,3 It is well-known that formation
of adducts ofR-amino acids to the complex enzyme cofactor
pyridoxal phosphate results in a large increase in the acidity of
theR-amino carbon.4 We now show that the carbon acidity of an
R-amino acid ester is increased dramatically by formation of the
iminium ion adduct to the simple ketone acetone.

Carbon deprotonation of glycine methyl ester, monitored by
following exchange for deuterium of the firstR-proton in D2O,
is second-order in the concentration of 3-quinuclidinone, in
contrast to the first-order dependence observed for other general
base catalysts such as 3-quinuclidinol.2,3 This second-order term
results from bifunctional catalysis by both the keto and amino
groups of 3-quinuclidinone, since we have found that the simple
ketone acetone is also a powerful catalyst of this deuterium
exchange reaction. The observed rate constant for deuterium
exchange into glycine methyl ester is increased by up to 1000-
fold in the presence of acetone and phosphate buffer.5 Amines,
including R-amino acids,6 provide very effective catalysis of
deprotonation of aldehydes and ketones via the formation of
iminium ion adducts (1, HR′).6-9 Catalysis of deprotonation of
R-amino acids through this adduct (1, HR) might have been
predicted, but not with such enormous catalytic power. In any

event, there have been few reports of catalysis of carbon
deprotonation ofR-amino acids by ketones10 and no studies of
the mechanism of this reaction.

The observed strong catalysis of deprotonation of theR-amino
carbon of glycine methyl ester by acetone results from activation
of the amino acid by formation of the iminium ion adductID +

(Scheme 1). The equilibrium constantKadd ) 0.0033 M-1 for
formation of ID + from N-protonated glycine methyl esterGD+

andd6-acetone in D2O at 25°C andI ) 1.0 (KCl) was determined
by monitoring the formation of small amounts ofID+ by 1H NMR
spectroscopy (Scheme 1).11,12 The apparent acidity constant for
glycine methyl ester in D2O at 25 °C and I ) 1.0 (KCl) was
determined by NMR titration asKa ) 3.2 × 10-9 M and is in
good agreement with our earlier potentiometric value.3

The exchange for deuterium of the firstR-proton of glycine
methyl ester in D2O at 25°C andI ) 1.0 (KCl) was followed by
1H NMR spectroscopy at 500 MHz.2,3,11,13,14Table S1 of the
Supporting Information gives the observed first-order rate con-
stantskex (s-1) for deuterium exchange in the presence of various
concentrations of acetone and buffer catalysts at pD 7.64 and 6.61
(phosphate buffer) and at pD 5.56 (acetate buffer) that were
determined by published procedures.15 Figure 1A shows the linear
dependence ofkex (s-1) on the total concentration of phosphate
buffer (pD 7.64) in the presence of different fixed concentrations
of acetone. The slopes of these correlations are the second-order
rate constants (kB)obsd (M-1 s-1) for deuterium exchange into
glycine methyl ester catalyzed by phosphate buffer at the given
concentration of acetone. These data will be discussed in a full
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report. The intercepts are the first-order rate constantsko ) kw fID
(s-1) for deuterium exchange at the given concentration of acetone,
wherefID ) Kadd[acetone]/{1 + Ka/aD} (aD ) 10-pD) is the fraction
of glycine methyl ester present as the iminium ion adductID +,16

and kw ) kDO[DO-] (s-1) is the first-order rate constant for
deprotonation ofID + by deuterioxide ion (Scheme 1).

Figure 1B shows the dependence of the values ofko (s-1) from
Figure 1A on the concentration of acetone. The slope of this
correlation is the observed second-order rate constant for acetone-
catalyzed deprotonation of glycine methyl ester by deuterioxide
ion at pD 7.64, (kw)obsd ) 2.7 × 10-6 M-1 s-1 (eq 1). This was
substituted into eq 1 withKadd ) 0.0033 M-1, Ka ) 3.2 × 10-9

M and aD ) 10-7.64 M to give kw ) 9.3 × 10-4 s-1 for
deprotonation ofID + by deuterioxide ion at pD 7.64.

The same treatment of the data for reactions at pD 6.61 and
5.56 (Table S1) giveskw ) 1.0 × 10-4 M-1 s-1 andkw ) 8.2 ×
10-6 M-1 s-1, respectively. The inset in Figure 1B shows the
linear logarithmic plot of the values ofkw against pD. The solid
line of unit slope shows the fit of the data to eq 2, whereKw )
10-14.87 M2 is the ionization constant of D2O at 25°C,17 andγOL

) 0.79 is the apparent activity coefficient of lyoxide ion

determined under our reaction conditions.14 The data givekDO )
13,000 M-1 s-1 as the second-order rate constant for deprotonation
of the iminium ionID+ by deuterioxide ion. This can be combined
with an estimated solvent deuterium isotope effect ofkDO/kHO )
1.46 to givekHO ) 9000 M-1 s-1 for deprotonation ofIH + by
hydroxide ion in H2O (Scheme 2).18

Equations 3 and 4 describe the observed linear logarithmic
correlation betweenkHO and the carbon acidity pKCH of cationic
ketones and esters.19 Substitution ofkHO ) 9000 M-1 s-1 for
deprotonation of the iminium ionIH + into eq 4 gives an estimated
value of pKCH ) 14 for deprotonation of theR-imino carbon of
IH + to form the enolate zwitterion (Scheme 2). This is 7 pK units
lower than pKCH ) 21.0 for deprotonation ofGH+ at theR-amino
carbon.2,3 Therefore, a modest chemical modification of the amino
acid glycine results in a very substantial movement of the pKa of
theR-protons toward physiological pH. The formation of iminium
ion adducts betweenR-amino acids and the enzyme cofactor
pyridoxal phosphate also results in a large increase in the acidity
of theR-protons.21 Our data show that a large fraction of the effect
of this cofactor on carbon acidity is also observed for the much
simpler iminium ionIH +.

We propose that the large 7 pK unit effect of iminium ion
formation on the carbon acidity of glycine methyl ester represents
the additivity of two smaller effects: (1) The stabilization of the
enolate by direct delocalization of negative charge onto the
R-imino group (Scheme 2). A similar delocalization of charge
results in a ca. 3-unit lower pKa of 15.2 for the C-2 proton of
3-cyclohexenone22 compared with the pKa of 18.1 for cyclo-
hexanone.20a(2) The enhancement of intramolecular electrostatic
stabilization of the enolate anion by interaction with the cationic
nitrogen when the amino protons ofGH+ are replaced by an
organic fragment to giveIH +.3 This results in a 3-unit larger
acidifying effect of theR-NMe3

+ group at betaine methyl ester
(pKCH ) 18.0) than of theR-NH3

+ group atGH+ (pKCH ) 21.0).3

The large intramolecular electrostatic stabilization of zwitterionic
enolates has been thoroughly documented in earlier work.23
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Figure 1. (A) Dependence ofkex (s-1) for exchange for deuterium of
the first R-proton of glycine methyl ester in the presence of acetone on
the total concentration of phosphate buffer (pD 7.64) in D2O at 25°C
andI ) 1.0 (KCl). Key: (b) 0.01 M acetone; (1) 0.02 M; (9) 0.05 M;
(2) 0.10 M. (B) Dependence ofko (s-1), determined as the intercepts of
the correlations in Figure 1A, on [acetone]. The slope gives (kw)obsd(M-1

s-1) for acetone-catalyzed deuterium exchange into glycine methyl ester
at pD 7.64. Inset: pD-rate profile for deprotonation ofID+. Values of
kw were determined from (kw)obsdusing eq 1 (see text). The solid line of
unit slope shows the fit of the data to eq 2 which giveskDO ) 13 000
M-1 s-1 for deprotonation ofID+ by DO-.

Scheme 2
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